Robust Heading Estimation Indoors

نویسندگان

  • Jonas Callmer
  • David Törnqvist
  • Fredrik Gustafsson
چکیده

The problem of estimating heading is central in the indoor positioning problem based on measurements from inertial measurement and magnetic units. Integrating rate of turn angular rate gives the heading with unknown initial condition and a linear drift over time, while the magnetometer gives absolute heading, but where long segments of data are useless in practice because of magnetic disturbances. A basic Kalman filter approach with outlier rejection has turned out to be difficult to use with high integrity. Here, we propose an approach based on convex optimization, where segments of good magnetometer data are separated from disturbed data and jointly fused with the yaw rate measurements. The optimization framework is flexible with many degrees of freedom in the modeling phase, and we outline one design. A recursive solution to the optimization is derived, which has a computational complexity comparable to the simplest possible Kalman filter. The performance is evaluated using data from a handheld smartphone for a large amount of indoor trajectories, and the result demonstrates that the method effectively resolves the magnetic disturbances.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evaluation of a New Method of Heading Estimation for Pedestrian Dead Reckoning Using Shoe Mounted Sensors

In this paper, a novel method of sensor based pedestrian dead reckoning is presented using sensors mounted on a shoe. Sensor based systems are a practical alternative to global navigation satellite systems when positioning accuracy is degraded such as in thick forest, urban areas with tall buildings and indoors. Using miniature, inexpensive sensors it is possible to create self-contained system...

متن کامل

Heading estimation fusing inertial sensors and landmarks for indoor navigation using a smartphone in the pocket

Principal component analysis (PCA)-based approach for user heading estimation using a smartphone in the pocket suffers from an inaccurate estimation of device attitude, which plays a central role in both obtaining acceleration signals in the horizontal plane and the ultimate global walking direction extraction. To solve this problem, we propose a novel heading estimation approach based on two u...

متن کامل

Humans can perceive heading without visual path information.

It has previously been reported that humans can determine their direction of 3D translation (heading) from the 2D velocity field of retinal motion experienced during self-motion through a rigid environment, as is done by current computational models of visual heading estimation from optic flow. However, these claims were supported by studies that used stimuli that contained low rotational flow ...

متن کامل

Autonomous Localization in Unknown Environments

Over the last 20 years, navigation has almost become synonymous with satellite positioning, e.g. the Global Positioning System (gps). On land, sea or in the air, on the road or in a city, knowing ones position is a question of getting a clear line of sight to four or more satellites. Unfortunately, since the signals are extremely weak there are environments the gps signals cannot reach but wher...

متن کامل

It's the human that matters: accurate user orientation estimation for mobile computing applications

Ubiquity of Internet-connected and sensor-equipped portable devices sparked a new set of mobile computing applications that leverage the proliferating sensing capabilities of smartphones. For many of these applications, accurate estimation of the user heading, as compared to the phone heading, is of paramount importance. This is of special importance for many crowd-sensing applications, where t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013